
1

400-138 4 Ave SE Calgary AB T2G 4Z6
Telephone 1.800.452.9970
Fax 1.800.792.4044
www.accountant.intuit.ca

Microsoft® Excel spreadsheets provide
examples.
The three examples in the ProFile SDK:
• Import ProFile data into Excel.
• Export data from Excel to ProFile.
• Use ProFile to perform complex

calculations in Excel.
You are welcome to use these samples
in your own business, modify them for
custom purposes, or simply refer to them
as you create your own tools.

Use ProFile on the web to attract new
clients or offer new services to
existing clients.
Try our web example for calculating tax
and marginal rates at:
www.greenpoint.ca/active/osdiwebsample.dll
To use ProFile as a Financial Application
Server, you must obtain a license from
Intuit Canada. Your web application must
not compete with existing ProFile applica-
tions unless you have made special
arrangements with Intuit Canada.

The uses of the ProFile SDK are an
extension of the vision you have for
your firm.
• Integrate ProFile into other applica-

tions you use.
• Plug other software into ProFile.
• Use ProFile as the calculation engine

on your website.

The possibilities are endless, so start
brainstorming.
• Extract the time spent (or the billing

amount) from each ProFile T1/TP1
return to your time and billing pack-
age, similar to the built-in ProFile-
QuickBooks integration.

• Transfer data from your corporate
working paper software to the GIFI
forms in ProFile T2, avoiding the
default export-import steps required.

• Post the corporate tax liability calcu-
lated in ProFile T2 back to your
working papers.

• Pull current portfolio data from your
back-end system for mutual fund
transactions and post it to the Net
Worth statement in ProFile FP.

• Post planning results to secure web
pages for client review.

• Gather simple personal tax planning
information and provide a secure
online tax plan for the year.

Licensing - OSDI is built into
every ProFile application we
ship so that users can write
applications to access ProFile.
However, to connect to ProFile
through OSDI either on an
enterprise level or a web server
for a web site, additional or
modified licensing conditions
may apply. Please contact us for
more details.
Technical Support - ProFile
software support does not
include training or support in
Excel spreadsheets, website
design, programming languages
or the ProFile data structure. To
implement your ideas, we
recommend you seek the advice
of a programmer who understands
Microsoft® COM objects and can
work from this document.

The ProFile Software Development Kit (SDK) helps you use technol-
ogy built into ProFile to access data in ProFile files. Any user with Windows®

programming skills (in languages such as Delphi®, Visual Basic® or C++) can write
programs, macros or plug-ins that interact with ProFile.

Generally, software developers write programs with proprietary data structures. This
means you can’t get to your data unless you use their interface or their rules. We
decided to do something different with ProFile. Our Open Standard of Data Integration
(OSDI) is that difference. OSDI makes it easy to get to your data and expands what you
can do with ProFile.

Use reliable ProFile calculations from inside other software or from a web page. Take
data from custom applications and turn it into ProFile files. Read on to learn how!

ProFile Software Development Kit

EPROFILESDK05

Use the ProFile SDK to take
your business and processes
to the next level.

Contents
OSDI Examples................... 2

Example 1 - Import data
into Excel 2

Example 2 - Use ProFile
to calculate in Excel 3

Example 3 - Export from
Excel to ProFile 3

Example 4 - Import slips
from Excel 4

Example 5 - Calculate
preparer averages 5

Example 6 - Use ProFile
as web application 5

Implementing OSDI 6
ProFile Type Library 6
ProFile Data Dictionary .. 6
Formatting Dates 7

ProFile Plug-ins 8
Basic Steps to Creating a

ProFile Plug-in 8
IProfilePlugIn 9
Methods defined by

IProfilePlugIn 11

© 2005 Intuit Canada, a General Partnership,
2005. All rights reserved. Intuit, ProFile, and the
Intuit logo are trademarks of Intuit Inc., registered
in Canada and/or the United States and other
countries. Microsoft, Visual Basic and Windows are
either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or
other countries. All other brands or product names
are trademarks or registered trademarks of their
respective holders.

2

ProFile SDK examples

1 - Import ProFile data into Excel
For this example, you must first install two files by running
InstallProfiler.exe:
1 Double-click Profiler.exe, in the ProFile SDK folder, to launch

the self-extracting archive.
2 In the self-extractor dialog box, click [Unzip] to save the files

to the default (C:/Program Files/ProFile) ProFile folder.

3 If you run ProFile from a different folder, click [Browse] to
change the path. Once the correct path shows in the Unzip to
Folder field, click [Unzip].

This executable installs importdata.dat and profiler.xls into your
ProFile folder. The importdata.dat file must remain in your
ProFile folder. You can run profiler.xls from anywhere on your
hard drive; it contains a sample macro for importing data from
your ProFile T1 files.

To run the example in profiler.xls:
1 Double-click on profiler.xls to open the spreadsheet in

Microsoft® Excel.
2 Click the [Run Macro] button to open the ProFile to Excel

dialog box.

3 From the list on the left, select fields to import. Simply click a
field name and then click the [Add item] button. The name of
the field appears in the list on the right.
To import amounts from a field that is not included in the list,
type a field code, and click the [Add from input field] button.

4 To change the sequence of the fields, use the sorting
buttons right of the selected items list. Highlight any field to
move it up or down in the list.

5 The macro gathers data from ProFile T1 files in the default
folder: My Documents\My ProFile Data\2005T1. If you save
your T1 files in a different folder, enter a new path in the field.

6 Select the History Info or Audit Info checkboxes to transfer all
audit or file history messages to the spreadsheet.

7 Click the [Move to Excel] button to transfer the information to
the Excel spreadsheet.

8 A message tells you how many files were found and asks
you to wait. Once the import is complete, the dialog box
disappears and the spreadsheet contains data from those
ProFile files.

9 Finally, save the spreadsheet under a new file name. Other-
wise, the next time you run the macro, you will overwrite the
data you imported previously with the latest data in your
ProFile files.

Files in the Toolkit
• Profiler.exe contains two files, importdata.dat and profiler.xls

(Example 1 on page 2).
• 2005 Excel examples.xls contains two spreadsheets, ProFile

T1 MTR calculations (Example 2 on page 3) and Employees to
ProFile FX T4 slip (Example 3 on page 3).

• 2005 Slips from Excel to ProFile.xls contains spreadsheets
for importing slips data from other software into ProFile via an
Excel spreadsheet (Example 4 on page 4).

• 2005 Preparer Average.xls contains a spreadsheet which
produces a report on the types of returns your firm is preparing
and the fees each preparer is charging for their returns (Example
5 on page 5).

The ProFile SDK includes Microsoft® Excel tools and examples to show you how you could use OSDI technology. You
must have Microsoft® Excel installed on your computer to run them. You are welcome to use these samples in your own

business, modify them for custom purposes, or simply refer to them as you create your own tools. The spreadsheets contain
Visual Basic® macros that perform a few simple tasks using OSDI technology.

3

Example 3 - Export data from Excel to ProFile
This example shows you how to export T4 information
from an Excel spreadsheet to a ProFile file. The macro
extracts the employee and company information from
the spreadsheet and saves it in a ProFile FX file.
To create a ProFile FX file using this example:
1 Open 2005 Excel examples.xls in Excel.
2 Click the Employees to ProFile FX T4 slip tab at

the bottom of the screen. Notice the list of employ-
ees a the bottom of the spreadsheet.

3 Click [Create T4 slips in ProFile FX] to save the
data in a new ProFile FX file. You will not see
ProFile run, since the macro calls and runs
ProFile FX in the background to create and
populate the file.

4 To view the new FX file, go to C:\ and double
click on VB_Excel_to_ProFile_FX_example.05X.

5 Use File > Save as to rename this file using the
company name. If you do not rename the file, the
next time you run this example, you will overwrite
the original data.

Example 2 - Use ProFile as a tax engine in Excel
This example uses ProFile T1 as the tax engine for calculating
the tax and the marginal tax rate for an individual based on the
information you provide. When you enter amounts on the Excel
spreadsheet and run the macro, the macro calls and uses the
ProFile calculations to generate the results.
To try out this example:
1 Open 2005 Excel examples.xls.
2 Click the ProFile T1 MTR calculations tab at the bottom of the

screen.

3 At the top of the screen, you can enter client data on which to
base the calculation. By default, we have provided personal,
spousal and income information for a sample client.
To see how ProFile integrates with this example, change
some of this information. For example, change the Employ-
ment income to $50,000. You will see an automatic change
in the pie chart, but the marginal tax rate and tax amounts do
not change until you run the macro.

4 If you would like to create a ProFile T1 file based on this
information at the same time as you calculate the tax and the
marginal tax rate, select Create ProFile File?.

5 To save the new file somewhere other than in the default
location or with a different file name (the default is C:\Tax and
MTR Test.05T), click [Browse directory] to select a location
and enter a name for the file.

6 Click [Calculate tax and MTRs] to see the results of your
changes. You will see changes in the marginal tax rates, the
amounts in the tax summary and in the pie chart in the tax
summary.

7 To view the ProFile T1 file that was created, go to the direc-
tory where you saved the file (by default C:\) and double-click
on the file (Tax and MTR Test.05T) to open it in ProFile T1.

ProFile SDK examples (cont.)

4

Example 4 - Import slips data from Excel
Use this Excel macro to import slips information (previously exported from other software) from Excel into ProFile FX/Q. Import

information for the following slips: T4, T5, NR4, T101, T2202A, T4A, T4A-RCA, T4ANR T4F, T4PS, T5013, T5018 and RL4.

ProFile SDK examples (cont.)

Step 3 - Import slip information into ProFile FX/Q
1 Close ProFile.
2 Review the information your imported into the Excel

spreadsheet in Step 2. Make sure the information imported
correctly.

3 If the slip informa-
tion includes
amounts for Que-
bec, select Quebec
jurisdiction.

4 Click on the [Create]
button on the
spreadsheet. For
example, on the
OSDI T5 to ProFile
tab, click [Create T5/
RL3 file].

5 Browse to the folder
where you will save
the file, enter a
filename and click [Save].

6 Using Windows Explorer, browse to the folder where you
saved the file and double-click on the file to open it in ProFile.

7 In ProFile, review each slip. Make sure the information
imported correctly.

Step 4 - Consolidate information for different types of slips
into a single file. Optional
The process described in Step 3 creates a new ProFile file for
each type of slip. If you are importing several types of slips for a
single company, you will likely want to consolidate the different
types of slips into a single ProFile file.
For example, you are producing T4, T5 and T4A slips for a single
company and you created three ProFile files using the Excel
spreadsheet: T4.05X, T5.05X and T4A.05X. To combine these
three ProFile files into a single file, complete the following
steps:
1 Choose a one fo the files to be the file into which you will

place the other slips. In this example, we will use the file that
contains the T4 slip information, T4.05X.

2 Open the ProFile file from which you will extract the slip
information, T5.05X. Go to T5Detail and select Edit > Copy
Form.

3 Open the ProFile file into which you will insert the slip
information, T4.05X. Go to T5Detail and select Edit > Paste
Form.

4 Repeat steps 2 and 3 to copy and paste form information for
the slip summary form, T5Sum.

5 Select File > Save.
6 Repeat steps 2 through 5 for each type of slip you need

consolidate into a single file.

Step 1 - Export information from Informatrix to Excel
This sample file is particularly useful if use Informatrix and can
export. If you are not using Informatrix, use these as a rough
guide to understanding the process needed for exporting data
into the proper format.
1 Launch Informatrix.
2 Select File > Open and choose a client file which includes

slip data that is ready for export.
3 Select File > Export and select type of slip to export.
4 On the Export Specifications dialog box, select the individual

slips you wish to export by moving them to the right side of
the dialog box.

5 Select Add all the fields and do not select Export 1st line as
header.

6 Click [OK].
7 On the Export Save dialog box, enter a name and specify a

location to save the export file. Remember where you saved
the file.

8 Click [Save]. The exported data is saved as a .CSV file
(Comma Separated Values) file.

Step 2 - Import the CSV data into Excel
1 Open 2005 Slips from Excel to ProFile.xls.
2 Select the spreadsheet tab that corresponds with the type of

slips information you exported into the .CSV file.
3 At the bottom of the spreadsheet, there is a series of column

headings for your data. Click once in the first blank cell under
the first column heading on the left.

4 Select Data > Import External Data > Import Data.
5 Browse to where you saved the .CSV file in Step 1, select the

file and click [Open].
6 OnText Import

Wizard dialog box:
a Select Delimited

as the file type and
click [Next].

b Select Comma and
clear Tab as the
Delimiters for your
data. Click [Next].

c Select Text as the
Column data
format and click
[Finish].

7 Click [OK] on the Import Data dialog box. Slip information
appears under the column headings at the bottom of the
spreadsheet.

5

Example 6 - Use ProFile as web application
You can create web forms to submit data to applica-
tions that access ProFile through the type library.
ProFile becomes the engine for the web application.
For example, you could create a T1 Tax Planner web
application with a web form that gathers simple tax
planning information from your clients. When a client
submits information, the browser sends data to a
custom application that connects to ProFile. That
application then communicates with ProFile to create
a new T1 tax return and enter the numbers from the
web form into the PLAN form in the tax return. ProFile
calculates the return and the application retrieves
the results for posting to the web page.

We created an example on the web to show how you
could use ProFile to calculate tax and marginal rates:
1 Go to www.greenpoint.ca/active/osdiwebsample.dll.
2 Enter basic financial information required to

calculate your marginal tax rate (MTR).
3 Click the [Submit] button.
4 The data is sent to a web application running on a

server which interfaces with the ProFile T1/TP1
software. It calculates the results and displays a
report on a new page.

ProFile SDK examples (cont.)

Example 5 - Calculate preparer averages
This example gives you a way to quickly assess the sucess of
your firm and its preparers at any time throughout the tax
season. It looks at T1 returns to see how many were prepared
by each preparer, whether they prepared business, profes-
sional, rental or farming statements and calculates the average
fee for the return.
Use this spreadsheet to see which preparers have developed a
niche of clients who seek them out for certain types of returns.
Review whether your preparers are over- or undercharging
certain types of returns. This can help you standardize your
pricing and make sure you are not missing revenue opportuni-
ties.
To produce this report in Excel:
1 Open 2005 Preparer Average.xls.
2 Click the [Calculate Preparer Averages Button].
3 Enter the path to a folder where you keep your 2005T1 files

and click [Run Query].

4 Excel will take a few minutes to look at all your files, extract
the data and calculate the averages. Then, you will see the
summary in the table on the screen.

6

Now that you have explored the examples included in the ProFile SDK, you are probably wondering how to go about
implementing your own visions for the technology. Please be aware that you will need more than basic computer skills to

undertake these projects. If you have little or no programming experience or spreadsheet knowledge, we recommend that you hire a
programmer / consultant to implement your ideas. A few hours of an expert’s time may be all it takes to modify one of the examples
to meet your needs. If you have the programming skills, or you are a programmer who has been contracted to implement your ideas,
the following information will help you get started.

ProFile Type Library
A type library is a file that contains information about objects and
types that a component supports. The specification for coding
resides in the type library associated with the ProFile execut-
able, profile.exe.
A type library contains type information for classes and inter-
faces (including the required methods and arguments) that an
application supports externally. By importing a type library into
your software development environment, you can generate a
native code version of the classes and interfaces to work within
your chosen programming language.
To incorporate the ProFile data dictionary information into your
code, you must have access to the ProFile type library.
To link the ProFile type library into the Microsoft® Visual Basic®
Editor:
1 Open the Microsoft® Visual Basic® Editor by opening a

macro through Tools > Macro > Visual Basic Editor.
2 Once the Microsoft® Visual Basic® Editor is open, go to

Tool > References.
3 In the References dialog box make sure there is a

checkmark in the box next to ProFile Library and click [OK].

4 If the ProFile Library does not appear in the list of available
references, click [Browse] and go to your ProFile folder (by
default C:\Program Files\ProFile).

5 Select profile.exe in that folder and click [OK].
6 Now select Profile Library and click [OK].

ProFile Data Dictionary
We expose the ProFile data structures to give you access to ALL
fields in ANY ProFile data file, as well as File > Properties and
option settings.
ProFile applications have hundreds of forms and data struc-
tures. The process of manipulating all this data by doing
calculations, flowing numbers between forms, expanding
tables, carrying forward data, attaching memos and calculator
tapes, flagging diagnostics, maintaining override field status,
etc. is very complex. To help in this process, ProFile includes the
Data Dictionary to keep track of fields.
The Data Dictionary is an index of all the data variables, the
parameters of these variables, cross references, where the data
is used on a form, order of operation flags and more. It is the
central repository for the unique field codes. All data flow and
calculations move through the Data Dictionary. When writing
data to and reading data from the ProFile data structures, you
are using the ProFile Data Dictionary.

Field Codes
If you look at the Excel macro source code you will see ProFile
field codes that link the macro to the fields within ProFile. These
are the same field codes that you can display on the ProFile
Data Monitor, and that you use to customize the ProFile tem-
plates or to query the database. Each field code is a reference to
the data structure that uniquely identifies a field on a form.
These codes are stored within the ProFile Data Dictionary.
A ProFile data file includes many different groups, most of which
correspond to a form. Each group has three types of data arrays:
currency amounts (reals), text (strings) and bytes (or booleans).
To access a single data element, use the group name, followed
by a period, a single character representing the type of data and
an index into the data array. For example:
• to access the last name of the client on the T1 Info form, use

the field code: T1Info.S[4]
• to access the marital status of the client on the T1 Info form,

use the field code: T1Info.B[10].
When using ProFile T1, you can access the equivalent data field
in a coupled spouse return by typing “Spouse” before any field
code. For example, to access line 101 of the spouse’s 2005 T1
jacket, use the syntax: Spouse.T1[20].
For examples of how to access data elements in expandable
ProFile tables or on forms that may have multiple copies in a
single data file, refer to the Excel examples included in the
ProFile SDK.

ProFile SDK implementation

7

ProFile SDK implementation (cont.)

Copy Field Codes
To copy a field code:
1 Select Options > Environment > Edit > Right Click

Cut Copy Paste.
2 Open a form.
3 Right click in a field and select Copy field code

from the menu.

Display Field Codes
Use the Data Monitor to view the field code:
1 Select Options > Environment > Display > Data Monitor.

When you click [OK], the Data Monitor will appear across the
bottom of the screen.

2 Right-click on a cell in the Data Monitor and select Monitor.

3 In the Monitor dialog box, select Field code from the radio
buttons at the top and click [OK].

4 Move your cursor to a field on a form. The Data Monitor cell
that you modified will show the field code.

Print Field Codes
To print all the field codes on a form, right click-on the form. Hold
down <Ctrl + Shift> and select Print from the context-sensitive
menu. ProFile will print the field codes instead of the values in
the fields.

Formatting Dates
Dates in ProFile are stored as whole numbers. This
means that dates must be converted when they are
written to ProFile or read from ProFile. There is an
example of a date conversion in profiler.xls:
1 Open profiler.xls.
2 Go to Tools > Macro > Macros.
3 In the macro dialog box, select Macro1 and click

[Edit]. This will launch the Microsoft® Visual
Basic® Editor.

4 Once the Microsoft®
Visual Basic® Editor
opens, go to the
panel on the left,
right-click on
UserForm1 and
select View code.
The code for the form
will appear on the
right.

5 Go to Edit > Find and
search for
Delphidate.

That search will take you to the
section of source code that con-
verts the date from the number stored in ProFile.

8

The plug-in mechanism in ProFile allows software developers to hook into actions and events that occur while you use
ProFile. For instance, a plug-in could:

• replace or enhance the action taken when you select an item from a menu such as File > Save;
• prompt the user for security or login information when starting ProFile in order to prevent unauthorized access; or
• prepare to update or query a database as the user interacts with ProFile.

What is a Plug-in?
A plug-in is an auxiliary program that works with a software package to modify or enhance its functionality. In order to “plug into” an
application, a plug-in must adhere to strict specifications defined by that application. This allows the application to talk to the plug-in
without being aware of the implementation details of the plug-in.
Plug-ins are very widely used in software today. Many popular software packages allow plug-in functionality developed by third-party
software designers. For example:
• WinAmp, a popular music/media player allows others to create skins and visualizations to plug into its interface. Skins change

the appearance of the application interface. Visualizations provide animation as the music plays.
• Adobe Photoshop, an advance image editing program, allows other software creators to build tools to plug into its existing

functionality.
• Microsoft® Internet Explorer, the most popular web browser, permits many types of plug-ins to display special content on HTML

pages. For multimedia, you can install a QuickTime plug-in to show movies or a RealAudio plug-in to listen to live music.
• Microsoft® Word, the industry standard word processor, accepts numerous third-party plug-ins to assist with writing. The Adobe

Acrobat PDFMaker allows you to create a PDF from a Word document.

ProFile plug-ins

Basic Steps to Creating a ProFile Plug-in
To create a ProFile plug-in:
1 Create a COM object that implements the interface

IProfilePlugIn, as found in the ProFile type library.
2 Fill in desired customizations of ProFile by writing code

within the methods defined by IProfilePlugIn.
3 Compile the plug-in object (usually into a DLL).
4 Register the COM plug-in object in the registry so that ProFile

can find it. This is usually done by calling regsvr32 with the
name of the DLL that contains the plug-in object.

5 Edit the registry to include a data value called PlugIn in the
key:
HKEY_LOCAL_MACHINE\Software\GreenPoint\Profile
The data value “PlugIn” is a string value and contains the
GUID (Global Unique Identifier) of the plug-in object (as
registered with the regsvr32 step). This data value has a
format similar to this:
{661A4EF4-4869-11D2-A337-006008A9956D}

6 Run ProFile. If everything is correct, the plug-in will react to
the user’s actions within ProFile.

Microsoft® COM objects
The data interface component of OSDI is a Microsoft® COM object.
ProFile plug-ins are implemented as COM automation objects
(Microsoft® ’s Component Object Model standard) embedded in a
DLL.
COM stands for Component Object Model and is a Microsoft® binary
standard that allows a component to describe any of the constants
that it supports in a type library. COM has been part of the Windows®
family of operating systems for many years as the underlying
framework that makes OLE (Object Linking and Embedding), and
more recently ActiveX, possible. COM is an object-based framework
for developing and deploying software components.
• Defines a binary standard for component interoperability;
• Is programming-language-independent;
• Provides for robust evolution of component-based applications

and systems;
• Is extensible by developers in a consistent manner;
• Uses a single programming model for components to

communicate within the same process, and also across process
and network boundaries.

You can code COM objects in any programming language that is
able to create COM objects. If you want more information on COM,
surf to this URL: www.microsoft.com/com/.

9

IProfilePlugIn
The ProFile plug-in mechanism depends on an interface called IProfilePlugIn. To create a plug-in compatible with ProFile
you must create a COM automation object that supports the IProfilePlugIn interface and its associated methods.
Although this can be done in any language that supports COM, and the methods will be slightly different in each language,
the fundamentals remain the same. Our examples will use Delphi - the language we use for coding ProFile. Once
IProfilePlugIn is in Object Pascal (the native language of Delphi) you can create a COM automation object that supports
the IProfilePlugIn interface.

IProfilePlugin in Object Pascal
When you create an object that supports an interface, you are creating a programmatic promise that the object has
certain methods with certain arguments, called in a certain way. Once a plug-in is availabile to ProFile, the software can
create the plug-in object and start calling the IProfilePlugIn methods used by the object.
For instance, the plug-in code for the AppOpen method is called when you launch ProFile. You could use this code to
display a welcome dialog or a login page. Using the ShowQuickStart method argument (in the AppOpen method), you
can also control whether or not the QuickStart dialog box displays and whether or not ProFile should continue to open
(method argument = Continue) if a particular condition is met or not met (for instance, the login failed).

Sample 1 - IProfilePlugIn, imported into Object Pascal
IProfilePlugIn = interface(IDispatch)

['{CE694B21-9547-11D3-8606-BB9193E3F22C}']
procedure Initialize; safecall;
procedure FieldChangeNotification(const ProFileClient: IProfileClient;

UniqueID: Integer); safecall;
procedure ClientNotification(const ProFileClient: IProfileClient;

const FileName: WideString;
const ClientID: WideString; Action: Integer;
var Response: Integer); safecall;

function GetAboutBoxBitmap: Integer; safecall;
function GetSplashBitmap: Integer; safecall;
function GetProfileDialog: IProfileDialog; safecall;
procedure ExecuteAction(const AActionID: WideString;

var Handled: WordBool); safecall;
procedure AppCloseQuery(var CanClose: WordBool); safecall;
procedure AppClose; safecall;
procedure AppIdle; safecall;
procedure AppOpen(var ShowQuickStart: WordBool;

var Continue: WordBool); safecall;
function RTUNotification(const ProFileClient: IProfileClient;

RTUType: Integer;
out AError: WideString): WordBool; safecall;

procedure GetLicenseName(var LicenseName: WideString); safecall;
procedure GetLicenseCode(var LicenseCode: WideString); safecall;
procedure GetEncryptionType(var EncryptionType: SYSINT); safecall;

end;

ProFile plug-ins (cont.)

1 0

Steps for Coding a ProFile Plug-In in Borland Delphi 7
Within Borland Delphi 7:
1 Select File > New > Other.
2 Select ActiveX Library from ActiveX page.
3 With the newly created DLL active in the Project Manager select File > New > Other.
4 Select Automation Object from ActiveX page.
5 Enter a Class Name. In this example, name it TestPlugIn.
Within the unit that contains the automation object:
1 Select Project > Import Type Library.
2 Select profile.exe to generate the Profile_TLB.pas file.
3 Add PROFILE_TLB.pas to the interface uses class. This makes the IProfilePlugIn definition accessible to the new unit.
4 Remove the default interface from the TestPlugIn automation object, the class definition for TTestPlugIn and the type library.
5 While in the type library editor, add IUnknown to the Implements list for the TestPlugIn CoClass.
6 Add the IProfilePlugIn interface and methods to the class definition (Copy/Paste from Profile_TLB).
7 Select the class definition and press <Ctrl+Shift+C> to create the method stub.
8 Fill in the code for the different stubs.
9 Compile and correct errors.
10 Register the server via Run > Register ActiveX Server or by using "regsvr32 TestPlugIn.dll" from the Start Menu > Run box.
11 Edit the registry to include a data value called PlugIn in the key HKEY_LOCAL_MACHINE\Software\GreenPoint\Profile

The data value PlugIn is a string value and contains the GUID of the plug-in object (as registered with the regsvr32 step). This data
value has a format like this: {661A4EF4-4869-11D2-A337-006008A9956D}

12 Run ProFile to use the Plug-In.

Plug-in Code
The Delphi code resembles the IProfilePlugIn interface definition; however, the type is called TProfilePlugIn. TProfilePlugIn is a

class based on TAutoObject (a COM automation object) that supports IProfilePlugIn. By including the IProfilePlugIn interface in the
class definition, we are requiring the class to define methods that match the methods of the IProfilePlugIn interface.

Sample 2 - Plug-in class written in Delphi
type

TProfilePlugIn = class(TAutoObject, IProfilePlugIn)
Public

procedure Initialize; safecall;
procedure FieldChangeNotification(const ProFileClient: IProfileClient;

UniqueID: Integer); safecall;
procedure ClientNotification(const ProFileClient: IProfileClient;

const FileName: WideString;
const ClientID: WideString; Action: Integer;
var Response: Integer); safecall;

function GetAboutBoxBitmap: Integer; safecall;
function GetSplashBitmap: Integer; safecall;
function GetProfileDialog: IProfileDialog; safecall;
procedure ExecuteAction(const AActionID: WideString;

var Handled: WordBool); safecall;
procedure AppCloseQuery(var CanClose: WordBool); safecall;
procedure AppClose; safecall;
procedure AppIdle; safecall;
procedure AppOpen(var ShowQuickStart: WordBool;

Continue: WordBool); safecall;
function RTUNotification(const ProFileClient: IProfileClient;

RTUType: Integer;
out AError: WideString): WordBool; safecall;

procedure GetLicenseName(var LicenseName: WideString); safecall;
procedure GetLicenseCode(var LicenseCode: WideString); safecall;
procedure GetEncryptionType(var EncryptionType: SYSINT); safecall;

end;

ProFile plug-ins (cont.)

1 1

Methods defined by IProfilePlugIn

Initialize
Called Immediately after the plug-in loads.
Parameters None
Result None
Notes ProFile services are not fully available through this method. Make any calls requiring IProFileServices in AppOpen

AppOpen
Called After ProFile starts and immediately before the QuickStart dialog appears.
Parameters ShowQuickStart WordBool Set to TRUE to show the QuickStart dialog box.

Continue WordBool Set to FALSE to shut ProFile down immediately.
Result None

AppIdle
Called When the application is idle (when it is not processing).
Parameters None
Result None

AppCloseQuery
Called Just before the main ProFile window closes.
Parameters CanClose WordBool Default = TRUE

Set to FALSE to prevent ProFile from shutting down
Result None

AppClose
Called Just as the main ProFile window closes.
Parameters None
Result None

GetLicenseName
Called When the ProFile licensing information is needed (Help > License).
Parameters LicenseName WideString Set the licensee name.
Result None

GetLicenseCode
Called When the ProFile licensing information is needed (Help > License).
Parameters LicenseCode WideString Set the license code.
Result None

GetProfileDialog
Called Not currently used
Parameters None
Result IProfileDialog

GetAboutBoxBitmap
Called When you select Help > About, just before the About dialog box displays.
Parameters None
Result Integer Return 0 to use the default Help > About bitmap image. Return the handle to the Windows® GDI

Bitmap (HBITMAP) to use as the splash screen.

ProFile plug-ins (cont.)

1 2

GetSplashBitmap
Called On launch, just before the splash screen appears. (The splash screen is the image that appears on the screen as ProFile loads.)

Parameters None
Result Integer Return 0 to use the default splash screen bitmap image.

Return the handle to the Windows® GDI Bitmap
(HBITMAP) to use as the splash screen.

GetEncryptionType
Called When ProFile saves a data file
Parameters EncryptionType SYSINT Have the plug-in return one of the

following constants to set the encryption type to use when saving a file.
ofeNoCode = $00000000;
ofeACode = $00000002;

This method should be ignored.
Result None

ExecuteAction
Called Upon selection of most menu items.
Parameters AActionID WideString The internal name of a menu item or the supplied name of a menu item added by the plug-in. The

ActionIDs that you wish to act upon can be determined by implementing this method, clicking menu items,
and logging the AActionID that comes through.

Handled WideString Return TRUE when you handle an action so that ProFile does not execute the default action related to
this AActionID.

Result None

ClientNotification
Called When an action affects a client data file (that is File > Closed, File > Created, File > Saved, etc.)
Parameters ProFileClient IProfileClient Interface to the client data object upon which the action occurred.

FileName WideString Name of the file that contains the client data upon which the action occurred. (The data file must have
been saved at least once.)

ClientID WideString Social Insurance Number of the client data file upon which the action occurred.
Action Integer The action undertaken. (Constants in the following table (in type library as OClientAction).
Response Integer Not currently used.

Result None

FieldChangeNotification
Called When an onscreen field’s value changes.
Parameters ProFileClient IProfileClient Interface to the client data object

upon which the action occurred.
UniqueID Integer By using the IProfileModule method RegisterFieldNotification you can let ProFile know that you

wish to be notified when certain fields' data changes. In setting up that notification you associate a
numeric identifier with the field code or field alias for which you wish to receive notifications. The
Parameter UniqueID returns that numeric identifier when the registered field code or alias triggers the
FieldChangeNotification call.

Result None

RTUNotification
Called Just before a T1 client is built into an RTU, EFILE On-Line, EFILE On-Line Plus or TP1 NetFile file.
Parameters ProFileClient IProfileClient Interface to the client data object upon which the action occurred.

RTUType Integer
AError WideString Return the text error specified in this parameter.

Result WordBool Return whether (TRUE) or not (FALSE) to allow the client to be included in the EFILE file.

ProFile plug-ins (cont.)

1 3

Action Constant Occurs When...
caCreated A new file is created.

A new spouse is added to a T1 file.
caModified A file is saved
caInPreparerReview The client status changes to In Preparer

Review on the File > Properties dialog box
or via the Status After Printing command.

caInPartnerReview The client status changes to In Partner
Review on the File > Properties dialog box
or via the Status After Printing command.

caPrinted A file is printed.
caCompleted The client status changes to Completed

on the File > Properties dialog box or with
the Status After Printing command.

caInRTU A T1 client file is built into an RTU, EFILE
On-Line or EFILE On-Line Plus.

caRTUSent An RTU or EFILE On-Line Plus file is
transmitted to the CCRA.

caRTUAccepted ProFile receives notification that a client’s
T1 or T2 data was accepted by the
CCRA.

caRTUNotAccepted ProFile receives notification that a client’s
T1 or T2 data was rejected by the CCRA.

caInSEND A T1 client file is built into a SEND RTU.
caSENDSent A SEND RTU is transmitted to the CCRA
caSENDResult ProFile receives a known SEND result

from the CCRA.
caSENDNoResult ProFile receives an unrecognized or

empty SEND result from the CCRA.
caChequeIssued The Issued Cheque information is entered

on the File > Properties dialog box or on
the RC71 (T1 Only).

caChequeReceived The Received Cheque information is
entered on the File > Properties dialog
box (T1 Only).

caChequeReconciliation The Cheque Reconciliation information is
entered on the File > Properties dialog
box (T1 Only).

Ready to Print on the File >
Properties dialog box.

caCarriedForward A client file is carried
forward.

caImportedData Data was successfully
imported into the current
client from another file
type.

caImportedGIFI GIFI data is successfully
imported in a T2 file.

caTP1EDISent A TP1 EDI file is transmitted
to the MRQ.

caTP1EDIAccepted ProFile receives notifica-
tion that a client’s TP1 data
was accepted by the
MRQ.

caTP1EDINotAccepted ProFile receives notifica-
tion that a client’s TP1
data was rejected by the
MRQ.

caTP1EDIInERU A T1 client file is built into a
TP1 EDI file.

caClosed A client file is closed.
caOnlinePaymentReceived An online credit card

payment is successfully
processed.

caQBInvoiceAdded An invoice is added to
QuickBooks

ProFile plug-ins (cont.)

Action Constant Occurs When...
caOpened A file is opened.
caDeleted A file is deleted
caFileMoved A file is moved using the Client

Explorer or the Classic
Database.

caCoupled A two T1 files are coupled.
caUncoupled T1 files are uncoupled.
caReadyToPrint The client status changes to

